Phase field approach to interaction of phase transformations and plasticity at large strains
ثبت نشده
چکیده
Thermodynamically consistent phase fi eld approach (PFA) for multivariant martensitic phase transformations (PTs) and twinning for large strains is developed [1, 2]. Thermodynamic potential in hyperspherical order parameters is introduced, which allowed us to describe each martensite-martensite (i.e., twin) interface with a single order parameter [3]. These theories are utilized for fi nite element simulation of various important problems [1-4]. Phase fi eld approach to dislocation evolution was developed during the last decade and it is widely used for the simulation of plasticity at the nanoscale. Despite signifi cant success, there are still a number of points for essential improvement. In our study [5], a new PFA to dislocation evolution is developed. It leads to a well-posed formulation and mesh-independent solutions and is based on fully large-strain formulation. Our local potential is designed to eliminate stress-dependence of the Burgers vector and to reproduce desired local stress–strain curve, as well as to obtain the mesh-independent dislocation height H for any dislocation orientation. The gradient energy contains an additional term, which excludes localization of dislocation within height smaller than H but disappears at the boundary of dislocation and the rest of the crystal; thus, it does not produce interface energy and does not lead to a dislocation widening. Problems for nucleation and evolution of multiple dislocations along the multiple slip systems are studied. The interaction between PT and dislocations is the most basic problem in the study of martensite nucleation and growth. Here, a PFA is developed to a coupled evolution of martensitic PTs and dislocations [6], including inheritance of dislocation during direct and reverse PTs. A complete system of equations, including Ginzburg–Landau equations is presented. It is applied to studying the hysteretic behavior and propagation of an austenite-martensite interface with incoherency dislocations, the growth and arrest of martensitic plate for temperature-induced PTs, the evolution of phase and dislocation structures for stress-induced PTs, and the evolution of dislocations and high pressure phase in a nanograined material under pressure and shear [6, 7].
منابع مشابه
Interaction of phase transformations and plasticity at the nanoscale: phase field approach
Phase field approach (PFA) to the interaction between phase transformations (PTs) and dislocations is developed at large strains as a nontrivial combination of our recent advanced PFAs to martensitic PTs and dislocation evolution. Finite element method (FEM) simulations are performed to solve the coupled phase-field and elasticity equations and are applied to study of the growth and arrest of m...
متن کاملInfluence of heat generation on the phase transformations and impact responses of composite plates with embedded SMA wires
In the present research, in contrast to the available papers, not only the superelasticity but also the shape memory effects are taken into account in determination of the impact responses. At the same time, in addition to modifying Brinson’s model for the shape memory alloys (SMAs), to include new parameters and loading events, and Hertz contact law, distributions of the SMA phases are conside...
متن کاملDisplacive phase transitions at large strains: phase-field theory and simulations.
The Landau potential for multivariant displacive phase transformations (PTs) is derived for the most general case of large rotations, elastic and transformational strains, as well as nonlinear and different elastic properties of phases. The method of repetitive superposition of large strains is extended for PTs and is utilized in the finite-element method approach for solution of corresponding ...
متن کاملFinite Element Modeling of Strain Rate and Grain Size Dependency in Nanocrystalline Materials
Nanocrystalline materials show a higher strain-rate sensitivity in contrast to the conventional coarse-grained materials and a different grain size dependency. To explain these phenomenon, a finite element model is constructed that considers both grain interior and grain boundary deformation of nanocrystalline materials. The model consist of several crystalline cores with different orientations...
متن کاملHydrodynamic investigation of multiple rising bubbles using lattice Boltzmann method
Hydrodynamics of multiple rising bubbles as a fundamental two-phase phenomenon is studied numerically by lattice Boltzmann method and using Lee two-phase model. Lee model based on Cahn-Hilliard diffuse interface approach uses potential form of intermolecular forces and isotropic finite difference discretization. This approach is able to avoid parasitic currents and leads to a stable procedure t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014